Pair-production of heavy vector-like T quarks Saptaparna Bhattacharya, Ulrich Heintz, Meenakshi Narain Brown University I #### Introduction - The Standard Model comprises of three generations of chiral quarks. - Models with 4th generation chiral quarks are severely constrained from electro-weak precision measurements. - Vector-like quarks are an interesting possibility. - Such quarks appear in models such as the Little Higgs (along with additional massive gauge fields) and extra dimensions. - In the present framework, we look at the minimal extension of the standard model involving a vector-like quark. - Signal sample of TT pair production consists of 6 final states for 3 decay modes of the T to tH, Wb and Zt. - The T to tH decay channel uses the newly discovered Higgs as a probe for new physics. 2 #### Feynman diagrams for TT pair production Modes of T production include qq annihilation and gluon fusion #### The Model [0902.0792] - A vector-like quark χ is considered, which transforms as (3, 1, 2/3) under the $SU(3)_c \times SU(2)_W \times U(1)_Y$ gauge group. - This additional quark χ may mix with the SM top. Interactions with the first two generations are neglected. - On imposing electroweak symmetry breaking, the quark mass matrix takes the following form: $$\mathcal{L} = - \left(\begin{array}{cc} \bar{u}_L^3, \ \bar{\chi}_L \end{array} \right) \left(\begin{array}{cc} \lambda_t (v_H + H/\sqrt{2}) & 0 \\ M_0 & M_x \end{array} \right) \left(\begin{array}{c} u_R^3 \\ \chi_R \end{array} \right) + h.c. \quad (1)$$ - ▶ u^3 is the up type quark of the third generation. H is the Higgs boson and VEV, $v_H \approx 174$ GeV. - $ightharpoonup M_0$, M_χ and the λ_t Yukawa couplings are real. #### The Model [0902.0792] Transformation equations between gauge and mass eigenstate basis: $$\begin{pmatrix} t_{L,R} \\ t'_{L,R} \end{pmatrix} = \begin{pmatrix} \cos \theta_{L,R} & -\sin \theta_{L,R} \\ \sin \theta_{L,R} & \cos \theta_{L,R} \end{pmatrix} \begin{pmatrix} u_{L,R}^3 \\ \chi_{L,R} \end{pmatrix}$$ (2) - Here t is the standard model top, hence m_t is 173 GeV. t' is the new quark. - ▶ The mixing angles θ_L and θ_R are defined as : $$\theta_L = \frac{1}{2} \tan^{-1} \left(\frac{2M_0 \lambda_t v_H}{M_\chi^2 + M_0^2 + \lambda_t^2 v_H^2} \right) \tag{3}$$ $$\theta_R = \sin^{-1} \left(\sqrt{\frac{\sin^2 \theta_L m_{t'}^2}{\sin^2 \theta_L m_{t'}^2 + \cos^2 \theta_L m_t^2}} \right) \tag{4}$$ This model has two additional parameters : sin θ_L and mass of the top prime. ### Signal cross-sections at $\sqrt{s} = 14 \text{ TeV}$ | T M (C 37) | /: I \ | |--------------|------------------| | T Mass (GeV) | σ (in pb) | | 500 | 4.10091 | | 600 | 1.44649 | | 700 | 0.57883 | | 800 | 0.25400 | | 900 | 0.11961 | | 1000 | 0.05948 | | 1100 | 0.03089 | | 1200 | 0.01662 | | 1300 | 0.00920 | | 1400 | 0.00521 | | 1500 | 0.00301 | | 1600 | 0.00177 | | 1700 | 0.00105 | | 1800 | 0.00063 | | 1900 | 0.00038 | | 2000 | 0.00024 | 6 ## Signal cross-sections at $\sqrt{s} = 33 \text{ TeV}$ | T Mass (GeV) | σ (in pb) | |--------------|------------------| | 500 | 44.4263 | | 600 | 18.1717 | | 700 | 8.35889 | | 800 | 4.19501 | | 900 | 2.25365 | | 1000 | 1.27784 | | 1100 | 0.75733 | | 1200 | 0.46586 | | 1300 | 0.29547 | | 1400 | 0.19250 | | 1500 | 0.12836 | | 1600 | 0.08733 | | 1700 | 0.06046 | | 1800 | 0.04253 | | 1900 | 0.03032 | | 2000 | 0.02189 | | 2100 | 0.01598 | | 2200 | 0.01178 | | 2300 | 0.00876 | | 2400 | 0.00657 | | 2500 | 0.00497 | | 2600 | 0.00378 | | 2700 | 0.00290 | | 2800 | 0.00223 | | 2900 | 0.00173 | | 3000 | 0.00134 | 7 #### **Analysis Stategy** - Presence of multiple bosons in these processes lead to final states with multiple leptons and b-tagged jets (e.g. $TT \rightarrow bWtH \rightarrow (b \mid v \mid v \mid b \mid b \mid)$). - Search for final states with at least two leptons - Opposite signed leptons: Specifically require two leptons. - Major irreducible backgrounds: tt, DY. - Same signed leptons: Specifically require two leptons. - Backgrounds: Instrumental backgrounds from mis-identified leptons and diboson processes. - Multi-leptons: Specifically require three or more leptons. - Dominant background: rare SM processes (e.g. diboson decays) and misidentified leptons. Follows the same strategy as: Inclusive search for a vector-like T quark by CMS (http://cds.cern.ch/record/1557571?ln=en) #### Opposite-sign analysis Two event categories: - 2-3 Jet Category (OS23): This category includes a Z-veto. - Sensitivity in the bWbW mode - MET > 30 GeV, I b-tag - Cuts on HT (sum of the pTs of the selected jets), ST (sum of the pTs of the selected jets, selected leptons and MET) and minMlb (min invariant mass of a bjet and a lepton). - \geq 5 Jet Category (OS5+): - Sensitivity to modes with tH, tZ - Less DY, no Z-veto - MET > 30 GeV, 2 b-tags. - Cuts on HT and ST. Nominal BR: BR(bW) = I/2, BR(tH) = I/4, BR(tZ) = I/4 Yields calculated for I4 TeV (COM) and 300 fb^-1. Plots and yields are preliminary results. 9 # Opposite-sign analysis One b-tag, >= 2 jets and MET > 30 GeV The signal is multiplied by 10000. #### Opposite-sign analysis Projections for 300 fb $^{-1}$ at \sqrt{s} = 14 TeV One b-tag, >= 2 jets and MET > 30 GeV The signal is multiplied by 10000. #### Yields in the OS23 category | Sample | $\mu\mu$ | $e\mu$ | ee | Sum | |-----------------|-----------------|-----------------|-----------------|-----------------| | Tprime1500_BWBW | 1.76 ± 0.15 | 3.05 ± 0.23 | 1.66 ± 0.14 | 6.48 ± 0.44 | | Tprime1500_BWTZ | 0.46 ± 0.06 | 0.79 ± 0.09 | 0.47 ± 0.06 | 1.73 ± 0.15 | | Tprime1500_BWTH | 0.40 ± 0.06 | 0.68 ± 0.08 | 0.33 ± 0.05 | 1.41 ± 0.13 | | Tprime1500_THTH | 0.08 ± 0.02 | 0.12 ± 0.03 | 0.03 ± 0.01 | 0.24 ± 0.04 | | Tprime1500_THTZ | 0.09 ± 0.02 | 0.18 ± 0.04 | 0.08 ± 0.02 | 0.35 ± 0.05 | | Tprime1500_TZTZ | 0.05 ± 0.02 | 0.21 ± 0.04 | 0.09 ± 0.02 | 0.35 ± 0.05 | | TTbar | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | WJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | ZJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | Require: 2-3 jets, I btag, MET > 30 GeV, HT > 700 GeV, ST > 1500 GeV, minMlb > 550 GeV. Cuts optimized using S/\sqrt{B} as a first pass. More realistic modeling of ZJETS/DY background to be done with HT binned samples for better statistics in the tails. #### Yields in the OS5+ category | Sample | $\mu\mu$ | eμ | ee | Sum | |-----------------|-----------------|-----------------|-----------------|-------------------| | Tprime1500_BWBW | 0.18 ± 0.04 | 0.33 ± 0.05 | 0.17 ± 0.03 | 0.68 ± 0.08 | | Tprime1500_BWTZ | 1.63 ± 0.14 | 0.65 ± 0.08 | 1.53 ± 0.13 | 3.81 ± 0.28 | | Tprime1500_BWTH | 0.49 ± 0.06 | 1.04 ± 0.10 | 0.36 ± 0.05 | 1.89 ± 0.16 | | Tprime1500_THTH | 0.70 ± 0.08 | 1.44 ± 0.13 | 0.79 ± 0.09 | 2.93 ± 0.22 | | Tprime1500_THTZ | 2.85 ± 0.22 | 1.11 ± 0.11 | 2.54 ± 0.20 | $ 6.50 \pm 0.44 $ | | Tprime1500_TZTZ | 3.73 ± 0.27 | 0.92 ± 0.09 | 3.39 ± 0.25 | 8.04 ± 0.53 | | TTbar | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | WJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | ZJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | Require:>= 5 jets,2 btags, MET > 30 GeV, HT > 1700 GeV and ST > 2000 GeV. Cuts optimized using S/\sqrt{B} as a first pass. More realistic modeling of ZJETS/DY background to be done with HT binned samples for better statistics in the tails. #### Same signed analysis - Backgrounds are from diboson and triboson decay processes. - Instrumental backgrounds from mis-identified leptons. In the 8TeV analysis, this was done with a data-driven method. One b-tag, >= 3 #### Yields in the SS category | Sample | $\mu\mu$ | $e\mu$ | ee | Sum | |-----------------|------------------|-----------------|-----------------|------------------| | Tprime1500_BWTZ | 0.10 ± 0.03 | 0.20 ± 0.04 | 0.16 ± 0.03 | 0.46 ± 0.06 | | Tprime1500_BWTH | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.04 ± 0.02 | 0.08 ± 0.02 | | Tprime1500_THTH | 0.02 ± 0.01 | 0.04 ± 0.02 | 0.06 ± 0.02 | 0.12 ± 0.03 | | Tprime1500_THTZ | 0.15 ± 0.03 | 0.22 ± 0.04 | 0.16 ± 0.03 | 0.53 ± 0.07 | | Tprime1500_TZTZ | 0.22 ± 0.04 | 0.39 ± 0.06 | 0.23 ± 0.04 | 0.84 ± 0.09 | | WZJETS | 9.04 ± 6.06 | 0.00 ± 0.00 | 0.00 ± 0.00 | 9.04 ± 6.06 | | ZZJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | WWJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | www | 0.12 ± 0.08 | 0.12 ± 0.08 | 0.05 ± 0.04 | 0.28 ± 0.16 | | TTBARWW | 0.27 ± 0.15 | 0.32 ± 0.17 | 0.16 ± 0.09 | 0.76 ± 0.39 | | TTBARW | 1.77 ± 0.94 | 2.20 ± 1.16 | 0.98 ± 0.55 | 4.95 ± 2.53 | | TTBARZ | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | Total Bkg | 11.20 ± 6.14 | 2.64 ± 1.17 | 1.19 ± 0.56 | 15.02 ± 6.58 | Require:>= 3 jets, I btags, MET > 30 GeV, HT > 1500 GeV and ST > 2200 GeV. #### Multilepton (>= 3) analysis - Backgrounds are from diboson and triboson decay processes. - Instrumental backgrounds from mis-identified leptons. In the 8TeV analysis, this was done with a data-driven method. One b-tag, >= 3 jets and MET > 30 GeV #### Yields in the multi-lepton (>= 3) category | Sample | μμμ | еµµ/ееµ | eee | Sum | |-----------------|-----------------|-----------------|-----------------|-----------------| | Tprime1500_BWTZ | 0.66 ± 0.08 | 1.31 ± 0.12 | 0.65 ± 0.08 | 2.62 ± 0.21 | | Tprime1500_BWTH | 0.02 ± 0.01 | 0.08 ± 0.02 | 0.03 ± 0.01 | 0.12 ± 0.03 | | Tprime1500_THTH | 0.05 ± 0.02 | 0.19 ± 0.04 | 0.06 ± 0.02 | 0.31 ± 0.05 | | Tprime1500_THTZ | 0.84 ± 0.09 | 1.46 ± 0.13 | 0.83 ± 0.09 | 3.14 ± 0.24 | | Tprime1500_TZTZ | 1.26 ± 0.12 | 2.64 ± 0.21 | 1.03 ± 0.10 | 4.94 ± 0.35 | | WGJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | WWJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | WZJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | ZGJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | ZJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | ZZJETS | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | | www | 0.13 ± 0.08 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.13 ± 0.08 | | ZZZ | 0.00 ± 0.00 | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.02 ± 0.01 | | WWZ | 0.13 ± 0.08 | 0.31 ± 0.17 | 0.11 ± 0.07 | 0.55 ± 0.29 | | WZZ | 0.23 ± 0.12 | 0.25 ± 0.13 | 0.10 ± 0.06 | 0.58 ± 0.29 | | TTBARZ | 0.00 ± 0.00 | 4.06 ± 2.72 | 0.00 ± 0.00 | 4.06 ± 2.72 | | TTBARW | 0.66 ± 0.39 | 0.66 ± 0.39 | 0.00 ± 0.00 | 1.31 ± 0.72 | | TTBARWW | 0.17 ± 0.10 | 0.23 ± 0.13 | 0.00 ± 0.00 | 0.41 ± 0.21 | | Total Bkg | 1.31 ± 0.43 | 5.52 ± 2.76 | 0.21 ± 0.09 | 7.05 ± 2.86 | Require:>= 3 jets, I btags, MET > 30 GeV, HT > 1200 GeV and ST > 1500 GeV. Cuts optimized using S/\sqrt{B} as a first pass. #### Conclusion and future work - This was a first pass feasibility study. If vector-like quarks exist, they can be detected at the LHC at 14TeV. - •To do: Look at DY/ZJets sample produced with HT binning to make sure this background is better predicted. - •To do: Optimize cuts by computing expected limits. - •To do: Look at efficiency over a range of mass points. Samples are available for this study at mass points of (500, 700, 900, 1100, 1300, 1500, 1700, 1900) GeV. - •Study the effect of pile-up with available samples. - •To do: Look at 33 TeV samples. #### Back up material